1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
from torchvision import transforms import torchvision import torchvision.transforms as transforms import torch.optim as optim import torch.nn as nn import torch import matplotlib.pyplot as plt import numpy as np
from 深度学习基础学习.day04.LeNet_model import LeNet
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])
trainset = torchvision.datasets.CIFAR10( root="./data", train=True, download=False, transform=transform )
testset = torchvision.datasets.CIFAR10( root="./data", train=False, download=False, transform=transform )
trainloader = torch.utils.data.DataLoader( trainset, batch_size=36, shuffle=True, num_workers=0 )
testloader = torch.utils.data.DataLoader( testset, batch_size=10000, shuffle=False, num_workers=0 )
test_data_iter = iter(testloader) test_images,test_label = next(test_data_iter)
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')
net = LeNet()
loss_func = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(),lr = 0.001)
epochs = 5
for epoch in range(1,epochs+1):
running_loss = 0
for step,data in enumerate(trainloader,start = 0):
inputs, labels = data
optimizer.zero_grad()
output = net(inputs) loss = loss_func(output,labels)
loss.backward()
optimizer.step()
running_loss += loss.item() if step % 500 == 499 : with torch.no_grad(): output1 = net(test_images) predict_y = torch.max(output1,dim = 1)[1] accurancy = (predict_y == test_label).sum().item() / test_label.size(0)
print('[%d, %5d] train_loss: %.3f test_accuracy: %.3f'%(epoch,step + 1,running_loss /500,accurancy)) running_loss = 0
print("训练结束")
save_path = './LeNet.pth' torch.save(net.state_dict(),save_path)
|