| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 
 | 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 from torchvision import transforms
 import torchvision
 import torchvision.transforms as transforms
 import torch.optim as optim
 import torch.nn as nn
 import torch
 import matplotlib.pyplot as plt
 import numpy as np
 
 from 深度学习基础学习.day04.LeNet_model import LeNet
 
 transform = transforms.Compose([
 transforms.ToTensor(),
 
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
 ])
 
 
 
 trainset = torchvision.datasets.CIFAR10(
 root="./data",
 train=True,
 download=False,
 transform=transform
 )
 
 testset = torchvision.datasets.CIFAR10(
 root="./data",
 train=False,
 download=False,
 transform=transform
 )
 
 trainloader = torch.utils.data.DataLoader(
 trainset,
 batch_size=36,
 shuffle=True,
 num_workers=0
 )
 
 
 testloader = torch.utils.data.DataLoader(
 testset,
 batch_size=10000,
 shuffle=False,
 num_workers=0
 )
 
 
 test_data_iter = iter(testloader)
 test_images,test_label = next(test_data_iter)
 
 
 classes = ('飞机', '汽车', '鸟', '猫', '鹿',
 '狗', '青蛙', '马', '船', '卡车')
 
 
 
 
 
 
 
 
 
 
 
 
 net = LeNet()
 
 loss_func = nn.CrossEntropyLoss()
 optimizer = optim.Adam(net.parameters(),lr = 0.001)
 
 epochs = 5
 
 for epoch in range(1,epochs+1):
 
 running_loss = 0
 
 for step,data in enumerate(trainloader,start = 0):
 
 inputs, labels = data
 
 
 optimizer.zero_grad()
 
 
 output = net(inputs)
 loss = loss_func(output,labels)
 
 
 loss.backward()
 
 
 optimizer.step()
 
 running_loss += loss.item()
 if step % 500 == 499 :
 with torch.no_grad():
 output1 = net(test_images)
 predict_y = torch.max(output1,dim = 1)[1]
 
 accurancy = (predict_y == test_label).sum().item() / test_label.size(0)
 
 print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f'%(epoch,step + 1,running_loss /500,accurancy))
 running_loss = 0
 
 print("训练结束")
 
 save_path = './LeNet.pth'
 torch.save(net.state_dict(),save_path)
 
 
 |